
Research Statement
Johann-Alexander Hauswald

My research interests lie in system design with an emphasis on understanding the performance of emerg-
ing applications. Specifically, I research techniques, tools, and runtime systems to optimize the place-
ment of the computation and the implications on the hardware and software design.

What once defined the Edge as wimpy cloud reliant devices is now made up of mobile supercom-
puters, wearables, and smart speakers generating massive amounts of data that need computing housed
in Warehouse Scale Computers (WSC). Intelligent web services represent an emerging class of these
services that leverage machine learning (ML) algorithms on the critical path of a query. These have seen
an explosion of usage in recent years because of the very high accuracies achieved and the resulting
superior end-user experience. However, the amount of computation required for these applications is
still significantly larger than traditional web services and the demand for experiences that have ML on
the critical path of a query continues to increase.

My dissertation work focuses on intelligent web services and their impact on existing WSC infras-
tructures. Specifically, building end-to-end workloads, studying the performance bottlenecks on real
systems, and designing system architectures optimized for these workloads. To that end, I developed
an open-source virtual assistant Sirius [2] exposing the gap between existing computing infrastructures
and what’s needed for an application with ML on the critical path of a query. In follow-up work, I show
GPUs are a cost-effective cloud accelerator when optimizing for the algorithmic common case, namely
deep neural networks [1]. Finally, I investigate how computation can be partitioned between the edge
and cloud [5, 6] (latter work with a colleague), researching the tradeoffs that come when operating in a
constrained environment.

Toward the end of my dissertation, I pursued commercializing my work building virtual assistants
at Clinc, an AI company I founded with my research advisors and another graduate student. I was part
of the core engineering team which designed novel Natural Language Processing (NLP) techniques to
enable free-form dialogue with a virtual assistant, specifically designing the microservice and infrastruc-
ture architecture of the end-to-end system. After the successful completion of the core system, I worked
closely with our customers in bringing our technology to market, adapting it to specific requirements
and uses, and understanding the unique challenges of deploying software on-prem at large enterprises.
During my time at Clinc, I co-authored 2 papers investigating the importance of high-quality training
data in building robust text classification and slot-value pairing NLP models for virtual assistants [7, 8].
I also coauthored Clinc’s accepted NSF SBIR Phase I and II Grants and I am a co-inventor of 9 granted
patent applications in the field of virtual assistant design and NLP technologies.

At the time of publishing my work, our community was still focused on traditional web services and
lacked the necessary tooling to begin their investigations. My findings, paired with the open-source arti-
facts made available, spurred exciting research into these applications in academia and industry. Indeed,
the extremely strong interest from industry led to the founding of Clinc. My work was honored with the
prestigious Micro Top Picks award [3], selected as an invited paper in the ACM Transactions on Com-
puter Systems [4], built an active open-source community, has been used in numerous undergraduate
research projects, and has been cited in many academic and industry papers.

Dissertation Research - System Design for Intelligent Web Services

The proliferation of AI applications that use highly accurate ML algorithms to make inferences on end-
user speech, natural language and images has enabled a new suite of intelligent web service driven
experiences. However, the amount of compute needed for these web services is orders of magnitude
larger than traditional cloud applications and building increasingly larger WSCs to meet the demand is
not feasible. Systems architects are faced with the challenge of coming up with novel system archi-
tectures to accommodate this increase in demand. My dissertation investigates the question of how to
redesign WSCs for a future reliant on intelligent web services.

1



In my dissertation research, I design Sirius [2], an end-to-end open-source virtual assistant decom-
posed into a benchmark suite (Sirius Suite) used to study the computational bottlenecks of an application
with ML on the critical path of a query. The open-source workload and the benchmark suite are major
technical contributions to the community because until now the knowledge of how to build a virtual
assistant, an application that has significantly grown in usage in recent years, was limited to a small
number of enterprises. One key insight of this work shows that the amount of compute needed to add to
existing datacenter infrastructures if we were to replace traditional web-search queries with queries from
a virtual assistant would increase the size of current infrastructures by up to 168 times their existing size.
I perform a real system analysis to understand the computational bottlenecks of Sirius Suite on a CPU
server and show that, even if the software were to be perfectly optimized for the CPU, the performance
improvement would not be significant enough. Consequently, I investigate mapping the 7 computational
bottlenecks of the benchmark suite to 4 commercial off the shelf accelerators to quantify the potential of
accelerator based WSC architectures. The performance improvements of each accelerator enables the
study of the performance vs. cost (power consumption and purchase price) of each accelerator option
and proposes system architectures to improve the Total Cost of Ownership (TCO). Sirius concludes that
GPU- and FPGA-based WSC architectures mitigate unsustainable WSC scaling.

AI applications are ubiquitous and widely deployed in large part because of the high accuracies
achieved by deep neural networks (DNNs). However, this increase in accuracy comes at a very high
computational cost: 1) DNNs require large amounts of labelled data to train the models and 2) the net-
works have to be “deep” (i.e., with many parameters) to represent the learned data making inference
computationally intensive. In my work, which focuses on the inference phase of the DNN, I exploit the
algorithmic homogeneity across applications (i.e., DNNs can be used to solve a range of tasks) and wide-
spread industry adoption to design a single, highly optimized DNN-as-a-service engine using GPUs as
the accelerator of choice. I investigate the key bottlenecks inhibiting peak utilization of a multi GPU-
based server in a real system analysis. To study this, I built and open-sourced 2 key artifacts: DjiNN, the
highly optimized web service for DNN applications, and Tonic Suite: a suite of 7 DNN based applica-
tions representative of emerging workloads spanning computer vision, speech recognition, and natural
language processing applications [1]. I identify several performance bottlenecks (low utilization and
bandwidth to the GPU) in the service and design strategies to mitigate them, achieving high throughput
and multi-GPU scalability without diminishing query latency. One key insight of this work is that DNNs
do not benefit the same from acceleration because of the different neural network architectures across
applications (i.e., computational characteristics). I show batching computation to the accelerator, storing
the models in GPU memory, and running multiple DNN services improves the utilization and increases
the overall throughput of the system. With the design of a single, highly-optimized DNN service, my
work concludes that GPU-based server designs reduce the overall TCO of a WSC.

I am also interested in unlocking the potential of efficiently partitioning compute in the edge-cloud
computing ecosystem as edge devices and cellular networks become more powerful. In addition to
research focusing on WSCs, I have published [5] and collaborated [6] to investigate how to partition
ML compute between the edge and cloud. The key question we pose in our recent work is whether
completely offloading computation to the cloud is optimal (minimal latency and power consumption)
for the edge device. We show that DNNs can be either fully executed on the edge device, the cloud or
there exists a partition point within a neural network that minimizes the latency and power consumption
of the mobile device. We show this also improves datacenter throughput. We design a runtime system,
Neurosurgeon, that makes decisions on how to execute the neural network using its architecture and a
prediction model for each layer type that statically estimates the amount of computation needed.

Future Research Directions

Below I outline some areas of future work where I am excited to continue my research in system design.

2



Defragmenting the Edge-Cloud Ecosystem

The number of edge devices that rely on cloud connectivity for most of their processing has continued
to increase in recent years. Cloud providers are forced to design increasingly specialized accelerators
or build massive cloud infrastructures to keep pace. It is still an open question how to take advantage
of computing at the edge to mitigate the need to continue scaling WSC infrastructures. One of the
challenges in this regard recently described by Facebook is “there is no standard mobile SoC to optimize
for” and this leads to large variability in end-user experience 1. This creates a fragmented compute
ecosystem. I believe we are leaving future compute on the table and will have to continue building larger
cloud infrastructures if we do not research novel ways to reduce this variability and design systems for
efficient edge computation. Below I lay out specific questions in this research direction:

• Device Taxonomy: how should the landscape of devices be taxonomized with the goal of under-
standing if and where we can take advantage of spare cycles?

• Secure: what techniques must be developed to harness this ecosystem in a privacy conscious ap-
proach allowing secure, anonymized compute offload and incentive between independent devices?

• Cost-effective: what type of applications and what fraction must be offloaded to the edge for it to
be financially beneficial for cloud providers?

Device Taxonomy - The naive approach would be to taxonomize by device type, however it’s not
clear this is the best approach because it precludes compute sharing between heterogeneous devices. We
can study the compute available as a whole taxonomizing by compute potential, idle cycles, distance to
next best compute, and connection reliability to inform scheduling policies between different devices.
Part of this taxonomy is also performance benchmarking that I anticipate can be accomplished using a
combination of static and dynamic information. Recent work provides a starting point for the dynamic
measurements required for ML applications (high offload potential from the cloud to edge) to run pre-
dictable on-device benchmarks 2. This will provide an understanding of the device performance given
for a particular SoC there can be large variations (e.g., device type and aging, connectivity strength,
impact of background applications, unknown hardware defects, etc).

Secure - the proliferation of microservice architectures using lightweight, virtualization techniques
like Docker and Kubernetes make it possible to separate services into smaller units of compute that
can be mapped to heterogeneous computing hosts. These techniques are already widely used in cloud
infrastructures because they are secure and allow flexible mapping of compute needs to the underlying
hardware resources. I anticipate a similar approach can be used to allocate compute in the edge-cloud
ecosystem. Additionally there exist secure, anonymized device-to-device communication protocols that
use Bluetooth Low Energy (BLE) to exchange information between mobile devices. This approach can
be extended to develop a federated edge computing protocol.

Cost-effective - in most cases, the cloud is on the critical path of edge processing. Communication
with the cloud must become a second class design factor to reduce the need to continue building massive
cloud infrastructures. I do foresee the partitioning of compute to span the edge-cloud spectrum because,
as some of my prior research has shown, the environment changes frequently meaning the partitioning
decision needs to be constantly reevaluated. While edge computing does not come for free, there may
be spare cycles that can be leveraged instead of communicating with the cloud. I envision creating a
supply-and-demand economy where devices are incentivized to sign up in exchange for offsetting cloud
computing costs using secure, decentralized, and anonymous payment methods. The open question is
at what point does edge computing become financially more attractive than the cloud given the cloud is
already very aggressively optimized?

1See C-J. Wu et al. Machine Learning at Facebook: Understanding Inference at the Edge, HPCA’19.
2See V. J. Reddi et al. Mlperf Inference Benchmark, ISCA’20.

3



Cross-Layer Support for the ML Lifecycle

Sirius and DjiNN take for granted an important insight in deploying ML applications: a single ML web
service has significant software management overhead that is greater than traditional web services. There
are a host of challenges from a systems perspective that emerge when taking a model to production that
I have experienced first-hand in industry. Once the model is live, there is a continuous feedback loop
of curating more training data, validating the model, and pushing it to production; a serial and latent
process. Indeed, industry has recently built a number of tools (Google’s AirFlow, Netflix’s MetaFlow
and Databricks’ MLFlow to name a few) to manage the ML model lifecycle commonly referred to as
“MLOps”. It’s an open question what the proper approach should be moving forward as models grow
and our reliance on accurate, unbiased, and low-latency models continues to grow. Given this reliance,
I anticipate this to become an active area of systems research.

First, the MLOps workflow of train-test-deploy is a new workflow where the steps are represented as
a pipeline or a Directed Acyclic Graph (DAG). Similar to traditional CI/CD pipelines, the responsibility
is on the programmer to design the steps. I foresee a number of inefficiencies emerge when giving the
programmer the responsibility of designing the MLOps pipeline. I plan to investigate the following
improvements: automated validation of the DAG, efficient scheduling tasks to large clusters, and job
collocation of DAG nodes to the underlying hardware resources to improve utilization.

Second, once models are live, the typical process is to use a feedback loop to continue training the
model with live data to improve accuracy. The burden is on the developer to ascertain whether the new
model is “better” than the previous. Indeed, Amazon recently published a tool to aid users of its AI
platform with understanding how to define “better” given accuracy isn’t always the best metric 3. By
treating the model as a blackbox, developers build regression suites to negate model drift. Given limited
information about how the model behaves, developers end up with very large regression suites. This is
a considerable bottleneck in deploying the model I witnessed firsthand during my time in industry. I
would like to investigate systems to validate ML models from a blackbox and whitebox approach that
are scalable and accurate which improve on the status quo of having to grow the data the longer the
model is deployed.

Third, as models are improved through a combination of more training data, changing learning
parameters, and tuning the model architecture, the computational footprint of the model typically grows
(some work lately in Neural Architecture Search (NAS) improves this). This makes it infeasible to run
on older devices while still meeting a strict SLA. MLOps tools combined with recent advanced compiler
frameworks like TVM 4 enable an interesting analysis of treating models as cross-compiled binaries for
target computing platforms. I am interested in studying the tradeoffs between accuracy, model bias, and
efficiency to design automated tools to reduce the burden on the programmer in having to pick a certain
optimization target as part of the MLOps pipeline.

I expect tackling the challenges of the ML lifecycle will create many opportunities to collaborate
with experts in programming languages, databases, algorithms, and distributed systems.

References

[1] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G. Dreslinski, J. Mars,
and L. Tang. Djinn and tonic: Dnn as a service and its implications for future warehouse scale
computers. ISCA’15.

[2] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. G. Dreslinski,
T. Mudge, V. Petrucci, L. Tang, and J. Mars. Sirius: An open end-to-end voice and vision per-
sonal assistant and its implications for future warehouse scale computers. ASPLOS’15.

3See Rauschmayr et al. Amazon SageMaker Debugger: A System for Real-Time Insights Into Machine Learning Model
Training, MLSys’21.

4See Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI’18.

4



[3] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. G. Dreslinski,
T. Mudge, V. Petrucci, L. Tang, and J. Mars. Sirius implications for future warehouse-scale com-
puters. IEEE Micro Top Picks’16.

[4] J. Hauswald, M. A. Laurenzano, Y. Zhang, H. Yang, Y. Kang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars. Designing future warehouse-scale
computers for sirius, an end-to-end voice and vision personal assistant. TOCS’15.

[5] J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti, and T. Mudge. A hybrid approach
to offloading mobile image classification. ICASSP’14.

[6] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. ASPLOS’17.

[7] Y. Kang, Y. Zhang, J. K. Kummerfeld, P. Hill, J. Hauswald, M. A. Laurenzano, et al. Data collection
for dialogue system: A clinc perspective. NAACL’18.

[8] S. Larson, A. Mahendran, A. Lee, J. K. Kummerfeld, P. Hill, M. A. Laurenzano, J. Hauswald, et al.
Outlier detection for improved data quality and diversity in dialog systems. NAACL’19.

5


